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This proposed paper is less of a technical exposition than a retrospective and exhortation 
regarding the importance of sustained efforts in algorithm and software research and 
development.  The paper compares and contrasts the contributions of hardware and 
algorithm improvements to the rate of improvement in high performance computing and 
signal processing.  We conjecture that as IC shrinkage and attendant performance 
improvements begin to slow, the exponential rate of improvement we have become 
accustomed to for embedded applications will be sustainable only through a faster pace of 
improvement in algorithms and software.   
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Capability 

 
Gary A. Shaw and Mark A. Richards 

 
The exponential improvement in IC device density and throughput observed over the past 
40+ years, first articulated by Gordon Moore in 1965 and canonized as Moore’s Law, is 
well known and has had an immense impact on our society.  Obvious, but less appreciated, 
is the fact that the computational capability of a digital signal processor, and more generally 
any high performance computing system, is the sum of its hardware capability and its 
software capability.  By “hardware” we mean the physical implementation, which includes 
both individual ICs and the system 
architecture.  “Software” is the computational 
procedure, which includes both the 
mathematical functionality and the particular 
algorithm by which it is implemented.  For 
example, the discrete Fourier transform (DFT) 
is a particular mathematical function, while the 
fast Fourier transform (FFT) is a particular sequence of computations that implements the 
DFT efficiently.   
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Observed over long periods of time, software 
improvements, particularly fast algorithms, have 
contributed exponential rate improvements that 
equal or exceed the improvements accruing from 
faster hardware.  The best known example in the 
DSP community is, of course, the FFT.  
Depending upon the problem order, the 
computational speedup afforded by the basic 
radix-2 FFT is equivalent to anywhere from one 
to 20+ years of device improvement.  The FFT is 
not unique in terms of its impact on the acceleration of HPEC applications.  In an example 
of long-term evolution of scientific computing algorithms, Bentley2 documents 
improvements in the solution of 3-D elliptic partial differential equations.  He shows that 
from 1945 to 1985, operation counts for problems computed on an NxNxN grid were 
reduced through a succession of algorithmic improvements by a typical factor of N4/60. For 
a broadly representative problem size of N = 64, the improvement is a factor of about 
3x105, or just under 1.4 orders of magnitude per decade.  This rate of improvement is on 
par with that observed for IC devices.   Other examples of long-term, as well as sudden, 
algorithmic improvements can be found in applications ranging from dial-up modems to 
computer chess.  The improvements associated with these application areas will be 
illustrated in detail in the presentation. 
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2  Jon Bentley, “Programming Pearls,” Comm. ACM, v. 27(11), pp. 1087-1092, Nov. 1984. 
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While evidence exists for equal rate improvements from algorithms and hardware, there are 
nonetheless significant differences in the manner in which hardware and software 
improvements are manifested.  Hardware throughput performance increases exponentially 
and predictably as a function of time.  As long as Moore’s Law remains viable, we can 
count on the fact that a computationally complex algorithm not currently realizable in real 
time will eventually become realizable, and we can even predict approximately when it will 
be realizable!  In contrast, while reduced complexity algorithms are discovered 
unpredictably in time, they increase execution speed exponentially and predictably as a 
function of problem dimension or order.  Discovery of a fast algorithm thus acts in effect 
like the discovery of a “worm-hole” in time evolution of an application.  Thus, rather than 
waiting for the time evolution of Moore’s Law hardware improvements, the discovery of a 
fast algorithm creates an instantaneous leap ahead in performance, with the “time-
compression” benefit of the worm-hole increasing in proportion to problem order. 
 
In comparison to the historically predictable payoff in performance associated with 
investments in IC development, the unpredictability of new algorithm discovery makes 
investing in signal processing capability somewhat more risky.  However, the higher risk of 
algorithm investment is more than offset by its most fundamental payoff: the development 
of entirely new capabilities resulting from the application of new concepts and 
mathematics.  Improvements in hardware speed enable application performance 
improvements by supporting more of the existing functionality within a given amount of 
time, space, power, or other resource.  In contrast, breakthroughs in functionality add 
entirely new tools to the signal processing toolbox, and may change the entire nature of the 
signal processing problem and implementation complexity. 
 
With regard to new algorithm concepts and capabilities, the scope of research opportunities 
is actually expanding.  Many of the traditional examples of algorithm breakthroughs we 
have cited were new computational procedures that substantially reduced operation counts 
for a specific function; the solutions of PDEs, sorting, and the FFT are all examples.  New 
mathematical techniques provide new opportunities for similar improvements. Algorithms 
that achieve speedups by clever matching of mathematical problem structure to computer 
architecture represent a very different avenue of attack.  More fundamentally, emerging 
research focusing on knowledge-based and cognitive systems opens up to scrutiny entirely 
new types of both functionality and computational complexity. 
 
The investment needed to maintain, and even expand, an active and robust embedded 
processing research community is a fraction of the investment needed to keep 
semiconductors on the Moore’s Law growth curve, primarily because algorithm research 
costs are dominated by salaries, which rise at a much slower rate than the cost of new 
fabrication facilities.  Therefore, relatively modest increases in algorithm and software 
research are sufficient to maintain the total progress in signal processing performance.  In 
particular, as we move into a future where the certainty of Moore’s Law hardware 
improvements is in question, and the investment gap between algorithm research and 
improved semiconductor fabrication facilities continues to widen, increasing our 
investment in algorithm research appears to be an attractive and proven means to sustaining 
exponential growth in embedded application performance. 
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Outline

• Historical perspective – fulfillment of Moore’s Law

• Impediments to continued IC density growth

• Algorithms – the softer side of exponential growth 

• Implications regarding sustaining exponential growth

• Summary and Conclusions 



MIT Lincoln Laboratory
040928-4

HPEC GAS

Moore’s Law: Prediction and Realization

Original Prediction
(Source: Electronics 1965)

Source: IntelSource: IntelSource: Intel

2x every year 2x every year 

2x every ~1.9 years 2x every ~1.9 years 

Gordon Moore: “If Al Gore invented the 
Internet, I invented the exponential”
Gordon Moore: “If Al Gore invented the 
Internet, I invented the exponential”

John von Neumann: “Truth is much too complicated 
to allow anything but approximations.” 
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Top 500 Computer Growth
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Outline

• Historical perspective - fulfillment of Moore’s Law

• Impediments to continued IC density growth
– Heat dissipation
– Quantum effects
– Production technology

• Algorithms – the softer side of exponential growth 

• Implications regarding sustaining exponential growth

• Summary and Conclusions 
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Performance Implications of 
Shrinking Feature Size
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Moore’s Law Growth in Power Density
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Moore’s Law is Dead, Long Live Moore’s Law!
Theory & Practice: Feature Size for MOSFET Devices

Sources:
Combined graph and original concept: Lance Glasser, former Director, DARPA/ETO
Theory: Provided by Prof. David Ferry, Arizona State University
Practice: The National Technology Roadmap for Semiconductors (SIA Publication, 1994)
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Capitalization Cost Impediments
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Fulfillment  and Impact of Moore’s Prediction

• Silicon CMOS IC fabrication technology

• Examples of far-reaching impact
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Outline

• Historical perspective - fulfillment of Moore’s Law

• Impediments to continued IC density growth

• Algorithms – the softer side of exponential growth

• Implications regarding sustaining exponential growth

• Summary and Conclusions 
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Different Character of Hardware (IC) Vs. 
Algorithm Improvements

Improvement Metrics Hardware Algorithms
Regularity

Dependent variable

Impact on applications

Useful lifetime 3 years or less 10 years or more

R&D Cost growth

Predictable Unpredictable

Time Order complexity

Incremental Leap-ahead
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Computational Complexity Reduction Afforded 
by the FFT Over a Sum-of-Products DFT
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Moore’s-Law Equivalent Years Required 
to Match FFT Computational Speedup 
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Exponential Improvement in Modem Rates
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Application Maturation Cycle
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Pulse-Doppler Radar Example

• Algorithmically naïve implementation

• Reduced-order implementation with digital I/Q
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Pulse-Doppler Radar Algorithm Improvements
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Outline

• Historical perspective - fulfillment of Moore’s Law

• Impediments to continued IC density growth

• Algorithms – the softer side of exponential growth 

• Implications regarding sustaining exponential growth

• Summary and Conclusions 
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IC Vs. Algorithm Development 
(A Contrived but Useful Analogy)
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Increased Emphasis on 
Codesign Methodologies
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Wafer-Fab Capitalization Cost Compared to 
Annual DSP Algorithm R&D Costs 
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2x every 3 years

Capital cost for state-of-the-art wafer fab facility

1.11x every 3 years†

† Salary inflation rate based on US Bureau of Labor and Statistics Median Engineering Salaries 1983-2003

Annual R&D support for entire IEEE SP Society membership (18,500 x $150K in 2001)
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Summary and Conclusions

• Fulfilling Moore’s Law
– Enabled by diverse, innovative R&D aimed at realizing a common 

vision (ITRS semiconductor roadmap)
– Continued improvements may be impeded by a combination of 

thermal, quantum, and capital cost limits

• Taking up the slack
– Over same 40-year time frame as Moore’s Law, algorithm innovation 

has yielded exponentially improving performance as well
– Algorithm innovation also enabled by diverse R&D, but without as

clear of an industry-wide common vision
– Algorithm R&D cost growth significantly lower than fab capital cost 

growth (1.1x vs. 2x every 3 years)

• Increasing the effectiveness of algorithm R&D
– Develop better methods for quantifying the return on investment for 

algorithm R&D
– Consider mechanisms for developing a broader industry vision and

commitment to a long-term R&D roadmap

• Hardware/software codesign methods increasingly important 
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